MUMPS : A General Purpose Distributed Memory Sparse Solver

نویسندگان

  • Patrick Amestoy
  • Iain S. Duff
  • Jean-Yves L'Excellent
  • Jacko Koster
چکیده

MUMPS is a software package for the multifrontal solution of large sparse linear systems on distributed memory computers. The matrices can be symmetric positive definite, general symmetric, or unsymmetric, and possibly rank deficient. MUMPS exploits parallelism coming from the sparsity in the matrix and parallelism available for dense matrices. Additionally, large computational tasks are divided into smaller subtasks to enhance parallelism. MUMPS uses a distributed dynamic scheduling technique that allows numerical pivoting and the migration of computational tasks to lightly loaded processors. Asynchronous communication is used to overlap communication with computation. In this paper, we report on recently integrated features and illustrate the present performance of the solver.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver

To solve sparse linear systems multifrontal methods rely on dense partial LU decompositions of so-called frontal matrices; we consider a parallel, asynchronous setting in which several frontal matrices can be factored simultaneously. In this context, to address performance and scalability issues of acyclic pipelined asynchronous factorization kernels, we study models to revisit properties of le...

متن کامل

Task Scheduling in an Asynchronous Distributed Memory Multifrontal Solver

We describe the improvements to the task scheduling for MUMPS, an asynchronous distributed memory direct solver for sparse linear systems. In the new approach, we determine, during the analysis of the matrix, candidate processes for the tasks that will be dynamically scheduled during the following factorization. This approach significantly improves the scalability of the solver in terms of exec...

متن کامل

Polytechnique De Toulouse

In this thesis, we present our research on methods in high performance scientific computing for sparse matrices. Specifically, we are concerned with the development of a new algorithm for incremental norm estimation, the reference model implementation of the standard for Basic Linear Algebra Subprograms for sparse matrices (Sparse BLAS), and the design of a new task scheduler for MUMPS, an asyn...

متن کامل

An out-of-core extension of a parallel sparse multifrontal solver

We describe an out-of-core extension of a parallel sparse multifrontal solver, MUMPS. In a first implementation factors are written to disk as soon as computed whereas the stack memory remains in-core. We then overlap disk accesses with computation and allow some factors to stay incore after factorization, thus enhancing the performance of both the factorization and solution steps. Finally we a...

متن کامل

Drowning in Data A Library for the Solution of Sparse Systems on Distributed Memory Computers

The solution of large sparse linear systems lies at the heart of many calculations in computational science and engineering and is of increasing importance in computations in the financial and business sectors. Today, systems of equations with more than one million unknowns need to be solved. To solve such large systems in a reasonable time requires the use of powerful parallel computers. To da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000